JEE (Main) MATHEMATICS **SOLVED PAPER**

Time: 1 Hour Total Marks: 100

General Instructions:

- In Chemistry Section, there are 30 Questions (Q. no. 1 to 30).
- In Chemistry, Section A consists of 20 multiple choice questions & Section B consists of 10 numerical value type questions. *In Section B, candidates have to attempt any five questions out of 10.*
- There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice questions and zero mark will be awarded for not attempted question.
- 4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.
- Any textual, printed or written material, mobile phones, calculator etc. is not allowed for the students appearing for the test.
- All calculations / written work should be done in the rough sheet is provided with Question Paper.

Mathematics

Section A

- **Q.1.** If in a triangle ABC, AB = 5 units, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle ABC$ is 5 units, then the area (in sq. units) of $\triangle ABC$ is:
 - (1) $6+8\sqrt{3}$ (2) $8+2\sqrt{2}$
 - (3) $4+2\sqrt{3}$
- **(4)** $10+6\sqrt{2}$
- Q. 2. Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is:
 - **(1)**

- Q.3. The mean of 6 distinct observations is 6.5 and their variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are:

- **(1)** 10, 11
- (2) 8, 13
- **(3)** 1, 20
- **(4)** 3, 18
- **Q. 4.** Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$, angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is:
 - (1) $\frac{2}{3}$
- **(3)** 3
- **Q. 5.** The value of the integral

 $\int_{-1}^{\infty} \log_{e} \left(\sqrt{1-x} + \sqrt{1+x} \right) dx$ is equal to:

- (1) $2\log_e 2 + \frac{\pi}{4} 1$ (2) $\frac{1}{2}\log_e 2 + \frac{\pi}{4} \frac{3}{2}$
- (3) $2\log_e 2 + \frac{\pi}{2} \frac{1}{2}$ (4) $\log_e 2 + \frac{\pi}{2} 1$
- Q. 6. The probability of selecting integers $a \in [-5, 30]$ such that $x^2 + 2(a + 4)x - 5a +$ 64 > 0, for all $x \in \mathbb{R}$, is:

(1)
$$\frac{1}{4}$$

(2)
$$\frac{7}{36}$$

(3)
$$\frac{2}{9}$$

(4)
$$\frac{1}{6}$$

Q. 7. Let y = y(x) be the solution of the differential equation

$$x \tan \left(\frac{y}{x}\right) dy = \left(y \tan \left(\frac{y}{x}\right) - x\right) dx, -1 \le x \le 1,$$
$$y\left(\frac{1}{2}\right) = \frac{\pi}{6}.$$

Then the area of the region bounded by the curves x = 0, $x = \frac{1}{\sqrt{2}}$ and y = y(x) in the upper half plane is:

(1)
$$\frac{1}{12}(\pi-3)$$
 (2) $\frac{1}{6}(\pi-1)$

(2)
$$\frac{1}{6}(\pi-1)$$

(3)
$$\frac{1}{8}(\pi-1)$$

(3)
$$\frac{1}{8}(\pi-1)$$
 (4) $\frac{1}{4}(\pi-2)$

- **Q. 8.** If α and β are the distinct roots of the equation $x^2 + (3)^{1/4} x + 3^{1/2} = 0$, then the value of $\alpha^{96}(\alpha^{12}-1) + \beta^{96}(\beta^{12}-1)$ is equal to:
 - (1) 56×3^{25} (2) 52×3^{24}

 - (3) 56×3^{24} (4) 28×3^{25}

Q. 9. Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} \sin x - e^x, & \text{if} \quad x \le 0\\ a + [-x], & \text{if} \quad 0 < x < 1\\ 2x - b, & \text{if} \quad x \ge 1 \end{cases}$$

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:

- **(1)** 5
- **(2)** 3
- (3) 2
- **(4)** 4
- **Q. 10.** Let y = y(x) be the solution of the differential equation $e^x \sqrt{1-y^2} dx + \left(\frac{y}{x}\right) dy = 0, y(1) = -1.$ Then, the value of $(y(3))^2$ is equal to: (1) $1 + 4e^3$ (2) $1 + 4e^6$
- (3) $1-4e^6$

Q. 11. If z and ω are two complex numbers such that $|z\omega| = 1$ and $arg(z) - arg(\omega) = \frac{3\pi}{2}$, then $arg\left(\frac{1-2z\omega}{1+3z\omega}\right)$ is:

(Here arg(z) denotes the principal argument of complex number z)

- (3) $-\frac{3\pi}{4}$

Q. 12. Let [x] denote the greatest integer $\leq x$, where $x \in \mathbb{R}$. If the domain of the real valued function

$$f(x) = \sqrt{\frac{\|x\| - 2}{\|x\| - 3}}$$
 is $(-\infty, a) \cup [b, c) \cup [4, \infty)$,

a < b < c, then the value of a + b + c is:

- (1) -3
- **(2)** 1
- (3) -2
- **(4)** 8

Q. 13. The number of real roots of the equation $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{4}$ is:

- **(1)** 0
- **(3)** 1

Q. 14. The coefficient of x^{256} in the expansion of $(1-x)^{101}(x^2+x+1)^{100}$ is:

- (1) $^{-100}$ C₁₆ (2) 100 C₁₆ (3) 100 C₁₅ (4) $^{-100}$ C₁₅

Q. 15. Let the tangent to the parabola $S: y^2 = 2x$ at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq. units) of the triangle PQR is equal to:

- **(1)** 25

Q. 16. Let *a* be a positive real number such that

$$\int_0^a e^{x - [x]} dx = 10e - 9$$

where [x] is the greatest integer less than or equal to x. Then, a is equal to:

- (1) $10 + \log_{3} 3$
- (2) $10 \log_e(1 + e)$
- (3) $10 + \log_{e} 2$
- (4) $10 + \log_e(1 + e)$

Q. 17. Let 'a' be a real number such that the function $f(x) = ax^2 + 6x - 15$, $x \in \mathbb{R}$ is increasing in $\left(-\infty,\frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4},\infty\right)$. Then

the function $g(x) = ax^2 - 6x + 15$, $x \in \mathbb{R}$ has a:

(1) local minimum at $x = -\frac{3}{4}$

- (2) local maximum at $x = \frac{3}{4}$
- (3) local minimum at $x = \frac{3}{4}$
- (4) local maximum at $x = -\frac{3}{4}$
- **Q. 18.** Let $A = [a_{ij}]$ be $a \ 3 \times 3$ matrix, where

$$a_{ij} = \begin{cases} 1 & \text{, if } i = j \\ -x & \text{, if } \left|i - j\right| = 1 \\ 2x + 1 & \text{, otherwise} \end{cases}$$

Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined as f(x)= det(A). Then the sum of maximum and minimum values of *f* on R is equal to:

- (1) $\frac{20}{27}$ (2) $-\frac{88}{27}$ (3) $-\frac{20}{27}$ (4) $\frac{88}{27}$
- **Q. 19.** Let $A = \begin{bmatrix} 2 & 3 \\ a & 0 \end{bmatrix}$, $a \in \mathbf{R}$ be written as

P + Q where P is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to:

- **(1)** 24
- **(2)** 18
- (3) 45
- **(4)** 36
- **Q. 20.** The Boolean expression $(p \land \sim q) \Rightarrow (q \lor \sim p)$ is equivalent to:
 - (1) $\sim q \Rightarrow p$
- (3) $p \Rightarrow \sim q$

Section B

Q. 21. Let T be the tangent to the ellipse E : x^2 + $4y^2 = 5$ at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and $x = \sqrt{5}$ is $\sqrt{5}\alpha + \beta + \gamma$

$$\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$$
, then $\left|\alpha+\beta+\gamma\right|$ is equal to......

- Q. 22. The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}} + 5^{\frac{1}{6}}\right)^{120}$ is
- Q. 23. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is .
- **Q. 24.** Let \vec{a} , \vec{b} , \vec{c} be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ , with the vector $\vec{a} + \vec{b} + \vec{c}$. Then, $36\cos^2 2\theta$ is equal to _____
- Q. 25. Let P be a plane passing through the points (1, 0, 1), (1, -2, 1) and (0, 1, -2). Let a vector $\vec{a} = \alpha \hat{i} + \beta \hat{i} + \gamma \hat{k}$ be such that \vec{a} is parallel to the plane P, perpendicular to $(\hat{i}+2\hat{j}+3\hat{k})$ and $\vec{a} \cdot (\hat{i} + \hat{j} + 2\hat{j}) = 2$, then $(\alpha - \beta + \gamma)^2$ equals .
- Q. 26. Let a, b, c, d be in arithmetic progression with common difference λ. If

$$\begin{vmatrix} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{vmatrix} = 2,$$

then value of λ^2 is equal to .

- Q. 27. If the value of $\lim_{x\to 0} \left(2-\cos x\sqrt{\cos 2x}\right)^{\left(\frac{x+2}{x^2}\right)}$ is equal to e^a , then a is equal to .
- O. 28. If the shortest distance between the lines $\vec{r_1} = \alpha \hat{i} + 2\hat{j} + 2\hat{k} + \lambda (\hat{i} - 2\hat{j} + 2\hat{k}), \ \lambda \in \mathbb{R}, \ \alpha > 0$ 0 and $\vec{r_2} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k}), \mu \in R$ is 9, then α is equal to _____.

Q. 29. Let y = mx + c, m > 0 be the focal chord of $y^2 = -64x$, which is tangent to $(x + 10)^2 + y^2 = 4$. Then, the value of $4\sqrt{2}$ (m+c) is equal to

Q. 30. Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = 7A^{20} - 20A^7$

+ 2I, where I is an identity matrix of order 3×3 . If B = $[b_{ij}]$, then b_{13} is equal to _____.

Answer Key

Q. No.	Answer	Topic Name	Chapter Name
1	1	Sine and Cosine Rule	Properties of Triangle
2	4	Classical Definition of Probability	Probability
3	1	Mean	Probability
4	4	Dot and Cross Product	Vector Algebra
5	4	Properties of Definite Integration	Definite Integration
6	3	Nature of Roots	Quadratic Equation
7	3	Exact Differential Equation	Differential Equation
8	2	Roots of Quadratic Equation	Quadratic Equation
9	2	Continuity of a Function	Continuity and Differentiability
10	3	Variable Separable Method	Differential Equation
11	4	Euler's Form	Complex Numbers and Quadratic Equation
12	3	Domain of Function	Functions
13	1	Domain	Inverse Trigonometric Function
14	3	General Term	Binomial Theorem
15	2	Tangent of Normal	Parabola
16	3	Properties of Definite Integration	Definite Integration
17	4	Local Extremum	Application of Derivative
18	2	Application of Derivative	Continuity and Differentiability
19	4	Symmetric and Skew Symmetric	Matrices Matrices and Determinants
20	2	Logical operation	Mathematical Reasoning
21	1.25	Area Under the Curve	Application of Integrals
22	21	Binomial Theorem	Binomial Theorem and Mathematical Induction
23	777	Combination	Permutation and Combination
24	4	Dot Product	Vector Algebra
25	81	Plane	Three Dimensional Geometry
26	1	Properties of Determinants	Matrices and Determinants
27	3	Limits	Limits and Derivatives
28	6	Shortest Distance Between Two Lines	Vector Algebra
29	34	Chord of Parabola	Parabola
30	910	Matrices	Matrices and Determinants

JEE (Main) MATHEMATICS SOLVED PAPER

2021 20th July Shift 1

ANSWERS WITH EXPLANATIONS

Mathematics

Section A

1. Option (1) is correct.

Given that, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$, R = 5 units

$$\therefore \cos B = \frac{3}{5} \Rightarrow \sin B = \frac{4}{5}$$

Now, $\frac{b}{\sin B} = 2R \Rightarrow b = 2R \sin B$

$$=2(5)\frac{4}{5}$$

$$\therefore \qquad b=8$$

Now, By cosine rule

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{3}{5}$$

$$\Rightarrow \frac{a^2 + 25 - 64}{10a} = \frac{3}{5}$$

$$\Rightarrow \qquad \qquad a^2 - 39 = 6a$$

$$\Rightarrow \qquad a^2 - 6a - 39 = 0$$

$$\Rightarrow \qquad a = \frac{6 \pm 8\sqrt{3}}{2}$$

$$\Rightarrow \quad a = \frac{6 \pm 8\sqrt{3}}{2} = 3 \pm 4\sqrt{3}$$

$$\Rightarrow a = 3 + 4\sqrt{3}, a = 3 - 4\sqrt{3}$$
$$a = 3 - 4\sqrt{3} < 0$$

 \therefore $a = 3-4\sqrt{3}$ can not be possible (since length of side can not be negative

$$\therefore \quad a = 3 + \sqrt{3}$$

Now, area of
$$\triangle ABC = \frac{abc}{4R} = \frac{\left(3 + 4\sqrt{3}\right)(8)(5)}{4(5)}$$

$$\Delta = \left(6 + 8\sqrt{3}\right) \text{ sq. units}$$

Hint:

- (i) The sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- (ii) The cosine rule: $a^2 = b^2 + c^2 2bc$ $\cos A$, $b^2 = a^2 + c^2 - 2ac \cos B$, $c^2 = a^2$ $+ b^2 - 2ab \cos C$

(iii)
$$\Delta = \frac{abc}{R}$$

Shortcut method:

(i)
$$\frac{b}{\sin B} = 2R$$

(ii)
$$\cos B = \frac{\left(a^2 + c^2 - b^2\right)}{2ac}$$

(iii)
$$\Delta = \frac{abc}{4R}$$

2. Option (4) is correct.

In the given word (Examination)

$$E \rightarrow 1, X \rightarrow 1, A \rightarrow 2, M \rightarrow 1,$$

 $O \rightarrow 1, T \rightarrow 1, N \rightarrow 2, I \rightarrow 2$

Total number of outcomes, $n(S) = \frac{11!}{2!2!2!}$

{where S is sample space}

Number of Favourable outcomes,

$$n(E) = \frac{10!}{2!2!2!}$$

Probability, P (F) =
$$\frac{n (E)}{n (S)} = \frac{\frac{10!}{2!2!2!}}{\frac{11!}{2!2!2!}} = \frac{1}{11}$$

Hints:

(i) Probability, P = Number of Favourable Outcomes/Total Number of Outcomes

$$P(E) = \frac{n(E)}{n(S)}$$

Shortcut Method:

(i) Use formula $n!/(p_1!p_2!p_3!)$, since letters are repeating

3. Option (1) is correct.

Given, mean
$$\bar{x} = \frac{\sum x_i}{n} = 6.5$$

 $\Rightarrow \sum x_i = 6.5 \times 6 = 39$

Let remaining two number be x and y.

So,
$$18 + x + y = 39$$

$$\Rightarrow \qquad x + y = 21 \qquad \qquad \dots (i)$$

$$\therefore 10.25 = \frac{\sum x_i^2}{n} - \left(\overline{x}\right)^2$$

$$\Rightarrow 10.25 = \frac{x^2 + y^2 + 4 + 16 + 25 + 49}{6} - (6.5)^2$$

$$\Rightarrow 10.25 = \frac{x^2 + y^2 + 94}{6} - (6.5)^2$$

$$\Rightarrow x^2 + y^2 = 221 \qquad \dots(ii)$$

Solving (i) and (ii)

$$\Rightarrow x^2 + (21 - x)^2 = 221$$

$$\Rightarrow 2x^2 - 42x + 220 = 0$$

$$\Rightarrow x^2 - 21x + 110 = 0$$

$$\Rightarrow (x-10)(x-11) = 0$$

$$\Rightarrow x = 10, 11$$

So,
$$x = 10$$
, $y = 11$

Hints:

(i) Mean of
$$[x_1, x_2, \dots, x_n] = \frac{(x_1 + x_2 + \dots + x_n)}{n}$$

(ii) Variance σ^2 .

$$= \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{x} = \frac{\sum_{i=1}^{n} x_i^2}{n} - \overline{x}^2$$

Shortcut method

$$10.25 = \frac{\left(x^2 + y^2 + 4 + 16 + 25 + 49\right)}{6} - \left(6.5\right)^2$$

Using y=21 - x, find x.

Then find y.

4. Option (4) is correct.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} = i(2) - j(2) + k(1) = 2\hat{i} - 2\hat{j} + \hat{k}$$

$$\therefore \quad |\vec{a} \times \vec{b}| = 3$$

Now,
$$|\vec{c} - \vec{a}|^2 = 8$$

$$\Rightarrow \qquad \left| \vec{c} \right|^2 + \left| \vec{a} \right|^2 - 2\vec{a} \cdot \vec{c} = 8$$

$$\Rightarrow |\vec{c}|^2 + 9 - 2|\vec{c}| = 8 \left[\because |\vec{a}|^2 = 2^2 + 1^2 + (-2)^2 \right]$$

$$= 9$$

$$\Rightarrow \qquad \left| \vec{c} \right| - 2 \left| \vec{c} \right|^2 + 1 = 0$$

$$\Rightarrow |\vec{c}| = 1$$

Now,
$$|(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin(\frac{\pi}{6})$$

= $3 \times 1 \times \frac{1}{2}$

$$\Rightarrow \left| \left(\vec{a} \times \vec{b} \right) \times \vec{c} \right| = \frac{3}{2}$$

5. Option (4) is correct.

Given
$$f(x) = \ln \left(\sqrt{1-x} + \sqrt{1+x} \right)$$

 $f(-x) = \ln \left(\sqrt{1-(-x)} + \sqrt{1-x} \right)$
 $\Rightarrow \qquad f(-x) = \ln \left(\sqrt{1+x} + \sqrt{1-x} \right) = f(x)$
 $\Rightarrow \qquad f(-x) = f(x)$
 $\therefore \qquad f \text{ is even function}$

Now, I =
$$\int_{-1}^{1} \ln\left(\sqrt{1-x} + \sqrt{1+x}\right) dx$$

$$\Rightarrow I = 2 \int_{0}^{1} \ln \left(\sqrt{1 - x} + \sqrt{1 + x} \right) dx$$

Put,
$$x = \cos 2\theta \implies dx = -2 \sin 2\theta \ d\theta$$

also $\cos 2\theta = 2\cos^2 \theta - 1 = 1 - 2 \sin^2 \theta$

Limits,
$$x = 0, \theta = \frac{\pi}{4}$$

$$x = 1, \theta = 0$$

$$\Rightarrow I = -4 \int_{\pi/4}^{0} \left[\ln \left\{ (\sin \theta + \cos \theta) \sqrt{2} \right\} \right] \sin 2\theta d\theta$$

$$= 4 \int_{0}^{\pi/4} \left[\ln \left\{ (\sin \theta + \cos \theta) \sqrt{2} \right\} \right] \sin 2\theta d\theta$$

$$= 4 \int_{0}^{\pi/4} \ln \left(\sin \theta + \cos \theta \right) \sin 2\theta d\theta$$

$$+ 4 \ln \sqrt{2} \int_{0}^{\pi/4} \sin 2\theta d\theta$$

$$= 4 \left[0 + \frac{1}{2} \int_{0}^{\pi/4} (\cos \theta - \sin \theta)^{2} d\theta \right]$$

$$+ 4 \ln \sqrt{2} \left(0 + \frac{1}{2} \right)$$

$$= 4 \left[0 + \frac{1}{2} \int_{0}^{\pi/4} (1 - \sin 2\theta) d\theta \right] + 2 \ln \sqrt{2}$$

$$= 2 \left[\theta + \frac{\cos 2\theta}{2} \right]_{0}^{\pi/4} + \ln 2$$

$$= 2 \left[\frac{\pi}{4} - \frac{1}{2} \right] + \ln 2$$

$$\therefore I = \frac{\pi}{2} - 1 + \ln 2$$

6. Option (3) is correct.

Given that $x^2 + 2(a + 4)x - (5a - 64) > 0$

Comparing given quadratic equation with general form, $Ax^2 + Bx + C$

Here, A = 1, B = 2(a + 4), C = -(5a - 64)
So, D < 0

$$\Rightarrow B^{2} - 4 \text{ AC} < 0$$

$$\Rightarrow 4(a + 4)^{2} + 4(5a - 64) < 0$$

$$\Rightarrow (a + 4)^{2} + (5a - 64) < 0$$

$$\Rightarrow a^{2} + 13a - 48 < 0$$

$$\therefore a = \frac{-13 \pm \sqrt{169 + 192}}{2} = -16,3$$

Since *a* is integer \Rightarrow *a* = -5, -4, -3, -2, -1, 0, 1, 2 as *a* \in [-5, 30]

$$\therefore$$
 Required probability = $\frac{8}{36} = \frac{2}{9}$

7. Option (3) is correct.

Given differential equation

 $a \in (-16, 3)$

$$\Rightarrow x \tan\left(\frac{y}{x}\right) dy = y \tan\left(\frac{y}{x}\right) dx - x dx$$

$$\Rightarrow \tan\left(\frac{y}{x}\right) (x dy - y dx) = -x dx$$

$$\Rightarrow \tan\left(\frac{y}{x}\right) \left(\frac{x dy - y dx}{x^2}\right) = \frac{-x}{x^2} dx$$

$$\Rightarrow \int \tan\left(\frac{y}{x}\right) \left(d\left(\frac{y}{x}\right)\right) = \int \frac{-1}{x} dx$$

$$\Rightarrow \ln\left|\sec\left(\frac{y}{x}\right)\right| = -\ln x + c$$

$$\Rightarrow \ln\left|x \sec\left(\frac{y}{x}\right)\right| = c$$

Now, apply
$$y\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
 in above

$$\therefore \qquad \ln \left| \frac{1}{2} \sec \left(\frac{\pi}{3} \right) \right| = c$$

$$\therefore \quad \ln \left| \frac{1}{2} \times 2 \right| = c \quad \Rightarrow c = \ln 1 = 0$$

$$\therefore \sec\left(\frac{y}{x}\right) = \frac{1}{x}$$

$$\therefore \qquad y = x \sec^{-1} \left(\frac{1}{x} \right)$$

So, required bounded area in upper half,

$$A = \int_{0}^{1/\sqrt{2}} x \sec^{-1}\left(\frac{1}{x}\right) dx = \int_{0}^{1/\sqrt{2}} x \cos^{-1}(x) dx$$

Using integration by parts

$$= \left| \left(\frac{x^2}{2} \cos^{-1} x \right) \right|_0^{\frac{1}{\sqrt{2}}} + \int_0^{\frac{1}{\sqrt{2}}} \frac{x^2}{2\sqrt{1 - x^2}}$$

$$= \left(\frac{1}{4} \cdot \frac{\pi}{4} - 0 \right) + \frac{1}{2} \int_0^{\frac{1}{\sqrt{2}}} \frac{1 - (1 - x^2)}{\sqrt{1 - x^2}} dx$$

$$= \frac{\pi}{16} + \frac{1}{2} \left[\left(\sin^{-1} x \right)_0^{\frac{1}{\sqrt{2}}} - \int_0^{\frac{1}{\sqrt{2}}} \sqrt{1 - x^2} dx \right]$$

$$= \frac{\pi}{16} + \frac{1}{2} \left[\frac{\pi}{4} - \left\{ \frac{1}{2} x \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x \right\} \right|_0^{\frac{1}{\sqrt{2}}}$$

$$= \frac{\pi}{16} + \frac{1}{2} \left[\frac{\pi}{4} - \left\{ \frac{1}{4} + \frac{\pi}{8} \right\} \right]$$

$$\therefore \quad \text{Area} = \frac{\pi - 1}{8}$$

8. Option (2) is correct.

Given
$$x^2 + (3)^{1/4} x + 3^{1/2} = 0$$

 $\Rightarrow x^2 + \sqrt{3} = -3^{1/4} x$
Squaring both sides,

$$\Rightarrow x^4 + 2\sqrt{3}x^2 + 3 = \sqrt{3}x^2$$

$$\Rightarrow x^4 + \sqrt{3}x^2 + 3 = 0$$

$$\Rightarrow \qquad \qquad x^4 + 3 = -\sqrt{3} \ x^2$$

Now squaring both the sides again,

$$\Rightarrow x^8 + 6x^4 + 9 = 3x^4$$

$$\Rightarrow x^8 + 3x^4 + 9 = 0$$

Put
$$x = \alpha$$
, $\alpha^8 = -9 - 3\alpha^4$
 $\therefore \quad \alpha^{12} = -9\alpha^4 - 3\alpha^8 = -9\alpha^4 - 3(-9 - 3\alpha^4) = 27$
Similarly $\beta^{12} = 27$
 $\Rightarrow \quad \alpha^{96} (\alpha^{12} - 1) + \beta^{96} (\beta^{12} - 1)$
 $= (27)^8 \times 26 + (27)^8 \times 26 = 52 \times (27)^8$
 $= 52 \times 3^{24}$

9. Option (2) is correct.

Since, f(x) is continuous at x = 0

So,
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0+} f(x) = f(0)$$

 $\Rightarrow -1 = a - 1 = -1$
 $\Rightarrow a = 0$

Since, f(x) is continuous at x = 1

So,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

 $\Rightarrow a - 1 = 2 - b = 2 - b$
Put $a = 0$, so $0 - 1 = 2 - b$
 $\Rightarrow -3 = -b$
 $\Rightarrow b = 3$

So, the value of a + b = 0 + 3 = 3

10. Option (3) is correct.

Given differential equation

$$e^{x}\sqrt{1-y^{2}}dx + \left(\frac{y}{x}\right)dy = 0, y(1) = -1$$

$$\Rightarrow e^{x}\sqrt{1-y^{2}}dx = \frac{-y}{x}dy$$

$$\Rightarrow \frac{ydy}{\sqrt{1-y^{2}}} = -\int xe^{x}dx$$

$$\Rightarrow \int \frac{-ydy}{\sqrt{1-y^{2}}} = \int xe^{x}dx$$

$$\Rightarrow \sqrt{1-y^{2}} = e^{x}(x-1) + c$$
Given $x = 1, y = -1$

$$\Rightarrow 0 = 0 + c \Rightarrow c = 0$$

$$\Rightarrow \sqrt{1-y^{2}} = e^{x}(x-1)$$
At $x = 3 \Rightarrow 1 - y^{2} = (e^{3}2)^{2} \Rightarrow y^{2} = 1 - 4e^{6}$

11. Option (4) is correct.

Given,
$$|z\omega|=1$$
 and $\arg(z) - \arg(\omega) = \frac{3\pi}{2}$
 $\Rightarrow |z||\omega|=1$ and $\arg(z) = \arg(\omega) + \frac{3\pi}{2}$
Let $\omega = re^{i\theta} \Rightarrow z = \frac{1}{r}e^{i\left(\frac{3\pi}{2} + \theta\right)}$

$$\Rightarrow \frac{1-2z\omega}{1+3z\omega} = \frac{1-2re^{i\theta}\frac{1}{r}e^{i\left(-\frac{3\pi}{2}-\theta\right)}}{1+3re^{i\theta}\frac{1}{r}e^{i\left(-\frac{3\pi}{2}-\theta\right)}}$$

$$= \frac{1-2e^{-i3\pi/2}}{1+3e^{-i3\pi/2}} = \frac{1-2i}{1+3i}$$
So, $\arg\left(\frac{1-2z\omega}{1+3z\omega}\right) = \arg\left(\frac{1-2i}{1+3i}\right)$

$$= \tan^{-1}(-2) - \tan^{-1}(3)$$

$$= \frac{\pi}{4}$$

12. Option (3) is correct.

$$f(x) = \sqrt{\frac{|x|-2}{|x|-3}}$$

$$\Rightarrow \sqrt{\frac{|x|-2}{|x|-3}} \ge 0 \cap |x|-3 \ne 0$$
Let $t = |x|, t > 0$

$$\Rightarrow \sqrt{\frac{t-2}{t-3}} \ge 0 \Rightarrow \frac{t-2}{t-3} \ge 0$$

$$\Rightarrow t \in (-\infty, 2] \cup (3, \infty) \cap t > 0$$

$$\Rightarrow |x| \in [0, 2] \cup (3, \infty)$$

$$\Rightarrow x \in (-\infty, -3) \cup [-2, 2] \cup (3, \infty)$$

$$\Rightarrow x \in (-\infty, -3) \cup [-2, 3] \cup [4, \infty)$$
So, $a = -3, b = -2, c = 3$
So, $a + b + c = -3 - 2 + 3 = -2$

13. Option (1) is correct.

Given,
$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{4}$$

As $x^2 + x \ge 0$
 $\Rightarrow x^2 + x + 1 \ge 1$
But $x^2 + x + 1 \le 1$ as $\sin^{-1} x \Rightarrow x \in [-1, 1]$
So, $x^2 + x = 0$
 $\Rightarrow x = 0, -1$
put $x = 0, -1$ does not satisfies the original

⇒ No solution

14. Option (3) is correct.

equation

$$(1-x)^{101} (x^2 + x + 1)^{100}$$
$$= (1-x)^{100} (x^2 + x + 1)^{100} (1-x)$$

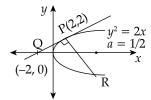
$$= [(1-x) (1 + x + x^{2})]^{100} (1-x)$$

$$= (1-x^{3})^{100} (1-x)$$

$$= (1-x) (^{100}C_{0} - ^{100}C_{1}x^{3} + ^{100}C_{2}x^{6} - \dots + ^{100}C_{84}x^{252} - ^{100}C_{85}x^{255} + ^{100}C_{86}x^{258} + \dots)$$

$$\therefore \text{ Coefficient of } x^{256} \text{ is } ^{100}C_{85} = ^{100}C_{100-85} = ^{100}C_{15}$$

15. Option (2) is correct.



Tangent at P : $yy_1 = 2a(x + x_1)$

$$y(2) = 2\left(\frac{1}{2}\right)(x+2)$$

$$\Rightarrow 2y = x + 2$$

$$\therefore Q = (-2, 0)$$

slope of tangent $P = \frac{1}{2}$

Normal at
$$P: y-2 = -\frac{1}{(\frac{1}{2})}(x-2)$$

$$\Rightarrow y - 2 = -2(x - 2)$$
 [:: $m_1 m_2 = -1$]
\Rightarrow y = 6 - 2x

∴ Now, solving with
$$y^2 = 2x \Rightarrow R\left(\frac{9}{2}, -3\right)$$

∴ Area(
$$\triangle PQR$$
) = $\frac{1}{2}\begin{vmatrix} 2 & 2 & 1 \\ -2 & 0 & 1 \\ \frac{9}{2} & -3 & 1 \end{vmatrix}$

$$= \frac{1}{2} |2(0+3)-2(-2-\frac{9}{2})+1(+6-0)|$$

$$= \frac{25}{2} \text{ sq. units}$$

16. Option (3) is correct.

Since, a > 0, $a \in \mathbb{R}$

Let
$$n < a < n + 1$$
, $n \in W$

$$\therefore a = [a] + \{a\} \dots (i)$$

where, [a] is greatest integer factor

 $\{a\}$ is fractional integer factor

$$\therefore [a] = n$$
Given:
$$\int_{0}^{a} e^{x-[x]} dx = 10e - 9$$

$$\Rightarrow \int_{0}^{n} e^{\{x\}} dx + \int_{0}^{a} e^{x - [x]} dx = 10e - 9$$

$$\Rightarrow n \int_{0}^{1} e^{x} dx + \int_{0}^{a} e^{x-n} dx = 10e - 9$$

$$\Rightarrow n(e - e^{0}) + (e^{x-n} - e^{n-n}) = 10 e - 9$$

$$\Rightarrow n = 0 \text{ and } \{a\} = \ln 2$$

Therefore, franequation (i)

$$a = [a] + \{a\}$$

= 10 + ln 2

17. Option (4) is correct.

$$f(x) = ax^2 + 6x - 15$$

$$\therefore f'(x) = 2ax + 6$$

For checking monotonic behaviour

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow$$
 $x = -3/a$

According to the question $\frac{-3}{a} = \frac{3}{4} \Rightarrow a = -4$

Then
$$g(x) = -4x^2 - 6x + 15$$

$$g'(x) = -8x - 6$$

For local maxima g'(x) = 0

$$\Rightarrow \qquad x = \frac{-3}{4}$$

$$\frac{+ - }{x = \frac{-3}{4}} \operatorname{sign of } g'(x)$$

$$\Rightarrow x = \frac{-3}{4} \text{ is a point of local maxima}$$

18. Option (2) is correct.

$$|A| = \begin{vmatrix} 1 & -x & 2x+1 \\ -x & 1 & -x \\ 2x+1 & -x & 1 \end{vmatrix}$$

$$= 1(1 - x^{2}) + x(-x + x(2x + 1)) + (2x + 1)$$

$$(x^{2} - (2x + 1))$$

$$= 1 + x^{2}(2x + 1) + x^{2}(2x + 1)$$

$$-(2x + 1)^{2} - x^{2} - x^{2}$$

$$\Rightarrow f(x) = 4x^{3} - 4x^{2} - 4x$$

$$\Rightarrow f'(x) = 12x^{2} - 8x - 4$$

$$\Rightarrow f'(x) = 4(3x^{2} - 2x - 1) = 4(x - 1)(3x + 1)$$

$$\frac{+ - + +}{-1/3 - 1} \text{ sign of } f'$$

$$\Rightarrow f(x) \text{ is maximum at } x = \frac{-1}{3} \text{ and}$$

minimum at x = 1

Maximum value =
$$f\left(\frac{-1}{3}\right) = \frac{20}{27}$$

Minimum value f(1) = -4

$$\therefore$$
 Sum = $\frac{20}{27} - 4 = \frac{-88}{27}$

19. Option (4) is correct.

Since
$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

where $A + A^{T}$ is symmetric and $A - A^{T}$ is skew symmetric matrix.

$$\Rightarrow P = \frac{1}{2} (A + A^{T}) \text{ and } Q = \frac{1}{2} (A - A^{T})$$

$$\Rightarrow Q = \frac{1}{2} \begin{bmatrix} 0 & 3 - a \\ a - 3 & 0 \end{bmatrix}$$

$$\Rightarrow \det(Q) = \frac{1}{4} (a - 3)^{2} = 9$$

$$\Rightarrow (a - 3)^{2} = 36$$

$$\Rightarrow a = 9 \text{ or } -3$$

Now,
$$P = \frac{1}{2} \begin{bmatrix} 4 & 3+a \\ a+3 & 0 \end{bmatrix}$$

 $\Rightarrow \det(P) = \frac{-1}{4} (a+3)^2 = 36 \text{ or } 0$

 \Rightarrow So, Modulus of all possible values of det (P) = 36

20. Option (2) is correct.

$$(p \land \neg q) \Rightarrow (q \lor \neg p)$$

= $(\neg p \lor q) \lor (q \lor \neg p)$
= $(\neg p \lor q) = (p \Rightarrow q)$

Section B

21. Correct answer is [1.25].

Equation of ellipse
$$x^2 + 4y^2 = 5$$

or, $\frac{x^2}{5} + \frac{4y^2}{5} = 1$

Equation of tangent at P (1, 1) is x + 4y = 5Now, area bounded by the required region

$$= \int_{1}^{\sqrt{5}} \left(\left(\frac{5 - x}{4} \right) - \sqrt{\frac{5 - x^2}{4}} \right) dx$$

$$= \left(\frac{5}{4} x - \frac{x^2}{8} \right) \Big|_{1}^{\sqrt{5}} - \frac{1}{2} \left[\frac{x}{2} \sqrt{5 - x^2} + \frac{5}{2} \sin^{-1} \left(\frac{x}{\sqrt{5}} \right) \right] \Big|_{1}^{\sqrt{5}}$$

$$= \left(\frac{5\sqrt{5}}{4} - \frac{5}{8} \right) - \left(\frac{5}{4} - \frac{1}{8} \right) - \frac{1}{2} \left(0 + \frac{5\pi}{4} \right)$$

$$+ \frac{1}{2} \left(1 + \frac{5}{2} \sin^{-1} \left(\frac{1}{\sqrt{5}} \right) \right)$$

$$= \frac{5}{4} \left(\sqrt{5} - 1 \right) - \frac{1}{2} - \frac{5\pi}{8} + \frac{1}{2} + \frac{5}{4} \sin^{-1} \left(\frac{1}{\sqrt{5}} \right)$$

$$= \frac{5\sqrt{5}}{4} - \frac{5}{4} - \frac{5}{4} \cos^{-1} \left(\frac{1}{\sqrt{5}} \right)$$
Comparing with the given condition

$\Rightarrow \alpha = \frac{5}{4}, \beta = \frac{-5}{4} \text{ and } \gamma = \frac{-5}{4}$

$$\Rightarrow \qquad \left|\alpha + \beta + \gamma\right| = \frac{5}{4} = 1.25$$

22. Correct answer is [21].

General term of
$$\left(2^{\frac{1}{2}} + 5^{\frac{1}{6}}\right)^{120}$$
 is

Given by
$$T_{r+1} = {}^{120}C_r \left(2^{\frac{1}{2}}\right)^{120-r} \left(5^{\frac{1}{6}}\right)^r$$

For rational term, r should be a multiple of 6 (*i.e.*) $r \in \{0, 6, 12, 18,, 120\}$

21 rational terms are there in the expansion $\left(2^{\frac{1}{2}} + 5^{\frac{1}{6}}\right)^{20}$

23. Correct answer is [777].

Case I: Team consist 5 batsman, 5 bowlers and 1 wicket keeper then, number of ways = ${}^{6}C_{5} \times {}^{7}C_{5} \times {}^{2}C_{1} = 6 \times 21 \times 2 = 252$

Case II: 4 bowlers, 6 batsman and 1 wicket keepers

$$= {}^{6}C_{4} \times {}^{7}C_{6} \times {}^{2}C_{1} = 15 \times 7 \times 2 = 210$$

Case III: 4 bowlers, 5 batsman and 2 wicket keepers

$$= {}^{6}C_{4} \times {}^{7}C_{5} \times {}^{2}C_{2} = 15 \times 21 \times 1 = 315$$

Total = 252 + 210 + 315 = 777

24. Correct answer is [4].

$$|\vec{a} + \vec{b} + \vec{c}|^{2} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{c})$$

$$= |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{c})$$

$$= |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 0$$

$$\therefore |\vec{a} + \vec{b} + \vec{c}|^{2} = |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} = 3k^{2}$$

$$\therefore |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3} k$$
Now, $\vec{a}.(\vec{a} + \vec{b} + \vec{c}) = |\vec{a}||\vec{a} + \vec{b} + \vec{c}|\cos\theta$

$$|\vec{a}.|^{2} + \vec{a}.\vec{b} + \vec{a}.\vec{c} = |\vec{a}||\vec{a} + \vec{b} + \vec{c}|\cos\theta$$

$$\Rightarrow k^{2} + 0 = k \times \sqrt{3} k \cos\theta$$

$$\Rightarrow \cos\theta = \frac{1}{\sqrt{3}} \Rightarrow \cos2\theta = 2\cos^{2}\theta - 1$$

$$\Rightarrow \cos2\theta = \frac{-1}{3} \Rightarrow \cos^{2}2\theta = \frac{1}{9}$$

$$\Rightarrow 36\cos^{2}2\theta = 4$$

25. Correct answer is [81].

Equation of plane P is

$$\begin{vmatrix} x-1 & y-0 & z-1 \\ 1-1 & 2 & 1-1 \\ 1-0 & 0-1 & 1+2 \end{vmatrix} = 0$$

or,
$$\begin{vmatrix} x-1 & y-0 & z-1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 6 $(x-1) + (z-1)(-2) = 0 \Rightarrow 3x - z - 2 = 0$

Normal vector to the plane P is $\vec{n} = 3\hat{i} - \hat{k}$

Now, $\vec{a} = \alpha \hat{i} + \beta j + \gamma \hat{k}$ is perpendicular to \vec{n}

$$\Rightarrow \vec{a} \cdot \vec{n} = 0 \Rightarrow 3\alpha - \gamma = 0.$$
 ...(i)

Also \vec{a} is perpendicular to $\vec{b} = \hat{i} + 2j + 3\hat{k}$

$$\Rightarrow \quad \vec{a} \cdot \vec{b} = 0 \Rightarrow \alpha + 2\beta + 3\gamma = 0 \qquad ...(ii)$$

And
$$\vec{a} \cdot (\hat{i} + j + 2\hat{k}) = 2$$

$$\Rightarrow$$
 $\alpha + \beta + 2\gamma = 2$...(iii)

by solving (i), (ii) and (iii)

$$\Rightarrow$$
 $\alpha = 1, \beta = -5, \gamma = 3 \Rightarrow (\alpha - \beta + \gamma)^2 = 81$

26. Correct answer is [1].

$$\begin{vmatrix} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{vmatrix} = 2$$

Given,
$$a$$
, b , c and d are in AP

$$(b-a) = (c-b) = (d-c)$$

$$\Rightarrow a + c = 2b, b + d = 2c$$

$$C_2 \rightarrow C_2 - C_3$$

$$\Rightarrow \begin{vmatrix} x - 2\lambda & \lambda & x + a \\ x - 1 & \lambda & x + b \\ x + 2\lambda & \lambda & x + c \end{vmatrix} = 2$$

$$R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$$

$$\Rightarrow \begin{vmatrix} x - 2\lambda & \lambda & x + a \\ 2\lambda - 1 & 0 & \lambda \\ 4\lambda & 0 & 2\lambda \end{vmatrix} = 2$$

$$\Rightarrow -\lambda[(2\lambda - 1) 2\lambda - 4\lambda^2] = 2$$

$$\Rightarrow 2\lambda^2 = 2$$

$$\lambda^2 = 1$$

27. Correct answer is [3].

$$\lim_{x\to 0} \left(2-\cos x\sqrt{\cos 2x}\right)^{\left(\frac{x+2}{x^2}\right)}$$

From indeterminate form 1^{∞}

$$= e^{\lim_{x\to 0} \left(\frac{1-\cos x\sqrt{\cos 2x}}{x^2}\right)(x+2)}$$

$$= e^{\lim_{x\to 0} \left(\frac{1-\cos^2 x \cdot \cos 2x}{x^2(1+\cos x\sqrt{\cos 2x})}\right)(x+2)}$$

$$= e^{\lim_{x\to 0} \left(\frac{1-(1-\sin^2 x)(1-2\sin^2 x))(x+2)}{x^2(1+\cos x\sqrt{\cos 2x})}\right)}$$

$$= e^{\lim_{x\to 0} \frac{\left(3\sin^2 x - 2\sin^4 x\right)(x+2)}{x^2(1+\cos x\sqrt{\cos 2x})}}$$

$$= e^{\lim_{x\to 0} \left(\frac{\sin^2 x}{x^2}\right)\frac{\left(3-2\sin^2 x\right)(x+2)}{\left(1+\cos x\sqrt{\cos 2x}\right)}}$$

$$= e^{\frac{3\times 2}{2}} = e^{\frac{3\times 2}{2}}$$

$$= e^{\frac{3}{2}} = e^{\frac{3}{2}}$$

28. Correct answer is [6].

 $\therefore a = 3$

Given equation of lines

$$\vec{r}_{1} = \alpha \hat{i} + 2\hat{j} + 2\hat{k} + \lambda (\hat{i} - 2\hat{j} + 2\hat{k})$$

$$\vec{r}_{2} = -4\hat{i} - \hat{k} + \mu (3\hat{i} - 2\hat{j} - 2\hat{k})$$

Shortest distance =
$$\frac{\left| (\vec{a}_1 - \vec{a}_2) \cdot (\vec{b}_1 \times \vec{b}_2) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|}$$

$$\therefore \qquad 9 = \left| \frac{\left((\alpha + 4)\hat{i} + 2\hat{j} + 3\hat{k} \right) \cdot \left(8\hat{i} + 8\hat{j} + 4\hat{k} \right)}{\sqrt{64 + 64 + 16}} \right|$$

$$\Rightarrow \left| \frac{8(\alpha+4)+16+12}{12} \right| = 9$$

$$\therefore \quad \alpha = 6, \text{ as } \alpha > 0$$

29. Correct answer is [34].

Given equation of parabola $y^2 = -64x$

Focus =
$$(-16, 0)$$

Let focal chord y = mx + c

$$\Rightarrow$$
 $c = 16 m$...(i)

If y = mx + c is tangent to

$$(x+10)^2 + y^2 = 4$$

$$\Rightarrow \qquad y = m(x+10) \pm 2\sqrt{1+m^2}$$

$$\therefore \qquad c = 10 \ m \pm 2 \sqrt{1 + m^2}$$

So,
$$16m = 10m \pm 2\sqrt{1 + m^2}$$

.....(from (i))

$$\Rightarrow \qquad 6m = \pm 2\sqrt{1+m^2}$$

$$\Rightarrow$$
 $3m = \pm \sqrt{1 + m^2}$

Squaring both sides,

$$\Rightarrow \qquad 9m^2 = 1 + m^2$$

$$\Rightarrow$$
 $8m^2 = 1$

$$\Rightarrow \qquad m = \frac{1}{2\sqrt{2}}, (m > 0) \text{ and } c = \frac{8}{\sqrt{2}}$$

$$\therefore 4\sqrt{2}(m+c) = 4\sqrt{2}\left(\frac{1}{2\sqrt{2}} + \frac{8}{\sqrt{2}}\right)$$
$$= 4\sqrt{2}\left(\frac{17}{2\sqrt{2}}\right) = 34$$

30. Correct answer is [910].

Let
$$A = I + C$$

Where
$$C = \begin{vmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$C^2 = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$C^3 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

So,
$$A^2 = (I + C)^2 = I + 2C + C^2$$

 $A^3 = A^2 \cdot A = I + 3C + 3C^2$

$$A^4 = I + 4C + 6C^2$$

$$A^5 = I + 5C + 10C^2$$

So,
$$A^n = I + nC + \frac{n(n-1)}{2}C^2$$

$$A^{20} = I + 20C + 190C^2$$

$$A^7 = I + 7C + 21C^2$$

$$\therefore$$
 B = $7A^{20} - 20A^7 + 2I$

$$B = 7(I + 20C + 190 C^{2})$$

$$-20(I + 7 C + 21 C^{2})$$

$$+ 2I$$

$$B = -11 I + 910 C^{2}$$

$$|-11 \quad 0 \quad 910$$

$$= \begin{vmatrix} -11 & 0 & 910 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{vmatrix}$$

$$b_{13} = 910$$